资源类型

期刊论文 58

会议视频 1

年份

2023 17

2022 8

2021 2

2020 4

2019 3

2018 6

2017 5

2016 1

2015 1

2013 2

2012 1

2011 1

2010 1

2009 3

2008 2

2007 1

2005 1

展开 ︾

关键词

形状记忆合金 3

长短期记忆网络 3

4D打印 2

增材制造 2

形状记忆聚合物 2

机器学习 2

AAC 1

CPU-GPU异构;多核;共享内存;访存调度 1

Ni–Ti–Cu–V合金 1

SoC 1

UniDrop 1

人—多机器人协同系统;基于零空间行为控制;任务管理器;强化学习;知识库 1

人工智能 1

人脑功能磁共振 1

充电模式;充电时长;随机森林;长短期记忆网络(LSTM);简化粒子群优化算法(SPSO) 1

兴趣点推荐 1

初始刚度 1

双向4D打印 1

展开 ︾

检索范围:

排序: 展示方式:

Hyperglycemic memory in diabetic cardiomyopathy

《医学前沿(英文)》 2022年 第16卷 第1期   页码 25-38 doi: 10.1007/s11684-021-0881-2

摘要: Cardiovascular diseases account for approximately 80% of deaths among individuals with diabetes mellitus, with diabetic cardiomyopathy as the major diabetic cardiovascular complication. Hyperglycemia is a symptom that abnormally activates multiple downstream pathways and contributes to cardiac hypertrophy, fibrosis, apoptosis, and other pathophysiological changes. Although glycemic control has long been at the center of diabetes therapy, multicenter randomized clinical studies have revealed that intensive glycemic control fails to reduce heart failure-associated hospitalization and mortality in patients with diabetes. This finding indicates that hyperglycemic stress persists in the cardiovascular system of patients with diabetes even if blood glucose level is tightly controlled to the normal level. This process is now referred to as hyperglycemic memory (HGM) phenomenon. We briefly reviewed herein the current advances that have been achieved in research on the underlying mechanisms of HGM in diabetic cardiomyopathy.

关键词: diabetes     diabetic cardiomyopathy     hyperglycemic memory    

Anti-hyperglycemic effect of the polysaccharide fraction isolated from mactra veneriformis

Lingchong WANG, Hao WU, Nian CHANG, Kun ZHANG

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 238-244 doi: 10.1007/s11705-010-0002-2

摘要: Total macromolecule extract was obtained from the soft body of by the coupling techniques of decoction and alcohol precipitation. The extract was deproteinized with an ion exchange column, and resulted in the purifying of the crude polysaccharide fraction. It was found by chemical analysis that the crude polysaccharide part is composed of abundant polysaccharides (>95%) and few proteins (<1%). Furthermore, only one type of monosaccharide, glucose, was detected from its hydrolytes by thin-layer chromatography, indicating that the polysaccharides might be analogs of glucosan. The anti-hyperglycemia effects of the crude polysaccharide part were preliminarily investigated using several pharmacological methods in normal and diabetic mice. Animal experimental results showed that the crude polysaccharide fraction exhibited proper glycemia inhibition activity, and 300 mg/kg-weight dose has the optimal effect among all the studied doses. It is concluded that the crude polysaccharide fraction can be explored as a novel health product that possesses potential as an anti-hyperglycemic agent.

关键词: anti-hyperglycemia     Mactra veneriformis     polysaccharide     monosaccharide composition     oral glucose tolerance test    

An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memoryeffect in shape memory alloys

S. HASHEMI,H. AHMADIAN,S. MOHAMMADI

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 466-477 doi: 10.1007/s11709-015-0300-3

摘要: Thermo-mechanical coupling in shape memory alloys is a very complicated phenomenon. The heat generation/absorption during forward/reverse transformation can lead to temperature-dependent variation of its mechanical behavior in the forms of superelasticity and shape memory effect. However, unlike the usual assumption, slow loading rate cannot guarantee an isothermal process. A two-dimensional thermo-mechanically coupled algorithm is proposed based on the original model of Lagoudas to efficiently model both superelasticity and shape memory effects and the influence of various strain rates, aspect ratios and boundary conditions. To implement the coupled model into a finite element code, a numerical staggered algorithm is employed. A number of simulations are performed to verify the proposed approach with available experimental and numerical data and to assess its efficiency in solving complex SMA problems.

关键词: shape memory alloy     thermo-mechanical coupling     superplasticity     shape memory effect    

Application of metal magnetic memory test in failure analysis and safety evaluation of vessels

Yiliang ZHANG, Song YANG, Xuedong XU

《机械工程前沿(英文)》 2009年 第4卷 第1期   页码 40-48 doi: 10.1007/s11465-009-0003-3

摘要: Metal magnetic memory test (MMMT), which is a new subject in the field of nondestructive examination, can determine regions of stress concentration by testing the distribution of the magnetic field of metal structures so as to effectively diagnose premature defects. MMMT and other test methods are applied in the study to put a propylene purifier of a temperature-jump accident and a leaked ammonia vessel through safety evaluation. Results are as follows: The margin of safety declines after the purifier is overburnt; several stress concentrations are observed within the overburnt area and the level of stress concentration rises after one-month operation; and overpressure operation of the purifier must be strictly avoided and carefully monitored during later operation. Cracks are observed on the ammonia vessel after one year’s service. Extremely high residual stress is the primary cause of cracks. After four years in service, the residual stresses existing in the area of the base metal and weld zone are still greater than 0.5 , which results in numerous cracks due to stress corrosion. From the MMMT result of the ammonia vessel’s defects, it can be seen that the derivative of magnetic density (d p/d ) is an important reference variable. Within the 31 leakage points, 67.7% of them whose dHp/dx values are more than 10, and 96.8% of them whose dHp/dx values are more than 8.

关键词: Metal magnetic memory test (MMMT)     nondestructive testing (NDT)     residual stress     propylene purifier     ammonia vessel    

Temperature effects of shape memory alloys (SMAs) in damage control design of steel portal frames

Xiaoqun LUO, Hanbin GE, Tsutomu USAMI

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 348-357 doi: 10.1007/s11709-012-0176-4

摘要: The objective of the present study is to analytically investigate temperature effects of an axial-type seismic damper made of shape memory alloys (SMAs) equipped in steel frames. Based on a modified multilinear one dimensional constitutive model of SMAs, two types of SMAs are employed, which have different stress plateau and different stress growth rate with temperature increase. Temperature effects of SMA dampers on seismic performance upgrading are discussed in three aspects: different environment temperatures; rapid loading rate induced heat generation and different SMA fractions. The analysis indicates that the effect of environment temperature should be considered for the SMA damper in steel frames. However, the rapid loading rate induced heat generation has little adverse effect.

关键词: damage control design     shape memory alloy     temperature effect    

A novel shape memory alloy actuated soft gripper imitated hand behavior

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0700-8

摘要: The limited length shrinkage of shape memory alloy (SMA) wire seriously limits the motion range of SMA-based gripper. In this paper, a new soft finger without silicone gel was designed based on pre bent SMA wire, and the finger was back to its original shape by heating SMA wire, rather than relying only on heat exchange with the environment. Through imitating palm movement, a structure with adjustable spacing between fingers was made using SMA spring and rigid spring. The hook structure design at the fingertip can form self-locking to further improve the load capacity of gripper. Through the long thin rod model, the relationship of the initial pre bent angle on the bending angle and output force of the finger was analyzed. The stress-strain model of SMA spring was established for the selection of rigid spring. Three grasping modes were proposed to adapt to the weight of the objects. Through the test of the gripper, it was proved that the gripper had large bending amplitude, bending force, and response rate. The design provides a new idea for the lightweight design and convenient design of soft gripper based on SMA.

关键词: shape memory alloy (SMA)     pre bent     wire     gripper     grasping mode     lightweight    

A fully solid-state cold thermal energy storage device for car seats using shape-memory alloys

《能源前沿(英文)》 2023年 第17卷 第4期   页码 504-515 doi: 10.1007/s11708-022-0855-3

摘要: Thermal energy storage has been a pivotal technology to fill the gap between energy demands and energy supplies. As a solid-solid phase change material, shape-memory alloys (SMAs) have the inherent advantages of leakage free, no encapsulation, negligible volume variation, as well as superior energy storage properties such as high thermal conductivity (compared with ice and paraffin) and volumetric energy density, making them excellent thermal energy storage materials. Considering these characteristics, the design of the shape-memory alloy based the cold thermal energy storage system for precooling car seat application is introduced in this paper based on the proposed shape-memory alloy-based cold thermal energy storage cycle. The simulation results show that the minimum temperature of the metal boss under the seat reaches 26.2 °C at 9.85 s, which is reduced by 9.8 °C, and the energy storage efficiency of the device is 66%. The influence of initial temperature, elastocaloric materials, and the shape-memory alloy geometry scheme on the performance of car seat cold thermal energy storage devices is also discussed. Since SMAs are both solid-state refrigerants and thermal energy storage materials, hopefully the proposed concept can promote the development of more promising shape-memory alloy-based cold and hot thermal energy storage devices.

关键词: shape-memory alloy (SMA)     elastocaloric effect (eCE)     cooled seat     cold thermal energy storage    

Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy

Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 547-557 doi: 10.1007/s11465-020-0595-1

摘要: Carbon fiber reinforced polymer (CFRP) composites have excellent mechanical properties, specifically, high specific stiffness and strength. However, most CFRP composites exhibit poor impact resistance. To overcome this limitation, this study presents a new plain-woven CFRP composite embedded with superelastic shape memory alloy (SMA) wires. Composite specimens are fabricated using the vacuum-assisted resin injection method. Drop-weight impact tests are conducted on composite specimens with and without SMA wires to evaluate the improvement of impact resistance. The material models of the CFRP composite and superelastic SMA wire are introduced and implemented into a finite element (FE) software by the explicit user-defined material subroutine. FE simulations of the drop-weight impact tests are performed to reveal the superelastic deformation and debonding failure of the SMA inserts. Improvement of the energy absorption capacity and toughness of the SMA-CFRP composite is confirmed by the comparison results.

关键词: carbon fiber reinforced polymer composite     shape memory alloy wire     impact resistance     drop-weight test     finite element simulation    

A decomposition approach to the design of a multiferroic memory bit

Ruben ACEVEDO, Cheng-Yen LIANG, Gregory P. CARMAN, Abdon E. SEPULVEDA

《机械工程前沿(英文)》 2017年 第12卷 第2期   页码 215-223 doi: 10.1007/s11465-017-0446-x

摘要:

The objective of this paper is to present a methodology for the design of a memory bit to minimize the energy required to write data at the bit level. By straining a ferromagnetic nickel nano-dot by means of a piezoelectric substrate, its magnetization vector rotates between two stable states defined as a 1 and 0 for digital memory. The memory bit geometry, actuation mechanism and voltage control law were used as design variables. The approach used was to decompose the overall design process into simpler sub-problems whose structure can be exploited for a more efficient solution. This method minimizes the number of fully dynamic coupled finite element analyses required to converge to a near optimal design, thus decreasing the computational time for the design process. An in-plane sample design problem is presented to illustrate the advantages and flexibility of the procedure.

关键词: multiferroics     nano memory     piezoelectric     optimization    

In memory of Perry L. McCarty, seminal founder of Environmental Biotechnology

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1730-0

A mini review: Shape memory polymers for biomedical applications

Kaojin Wang, Satu Strandman, X. X. Zhu

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 143-153 doi: 10.1007/s11705-017-1632-4

摘要: Shape memory polymers (SMPs) are smart materials that can change their shape in a pre-defined manner under a stimulus. The shape memory functionality has gained considerable interest for biomedical applications, which require materials that are biocompatible and sometimes biodegradable. There is a need for SMPs that are prepared from renewable sources to be used as substitutes for conventional SMPs. In this paper, advances in SMPs based on synthetic monomers and bio-compounds are discussed. Materials designed for biomedical applications are highlighted.

关键词: shape memory polymer     biodegradability     biocompatibility     biomedical application     bile acids    

Deformation analysis of shape memory polymer for morphing wing skin under airflow

Weilong YIN, Jingcang LIU, Jinsong LENG,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 447-449 doi: 10.1007/s11465-009-0062-5

摘要: The method for analyzing the out-of-plane deformation of a flexible skin under airflow is developed in this paper. The aerodynamic analysis is performed using the CFD software, and the structural analysis is performed using finite element method. The chief aim of the present study is to investigate the out-of-plane deformation of the shape memory polymer (SMP) skin at different temperatures. Numerical results show that the maximum out-of-plane displacement of the SMP skin increases with increasing temperature. When the SMP skin is heated to 53°C, the maximum out-of-plane displacement is about 7 mm. It decreases by 72%, when the SMP skin is applied with a uniform pre-strain of 0.1.

关键词: aircraft     morphing     skin     shape memory polymer (SMP)     deformation     pre-strain    

Characteristics of metal magnetic memory signals of different steels under static tension

Yiliang ZHANG, Ruibin GOU, Jimin LI, Gongtian SHEN,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 226-232 doi: 10.1007/s11465-010-0012-2

摘要: To study the characteristics of metal magnetic memory (MMM) signals of different steels during tensile test, static tension tests were applied to 30 pieces of Q235 and 16MnR base metal and welded specimens. During the various deformation periods, MMM signals are tested, and micrometallographic is observed. Furthermore, the derivative of magnetic intensity (d/d) is analyzed by mathematical and statistical methods to study the macro and micro corresponding relationships and difference among magnetic signals. Results show that despite the different magnetic intensity () curves of different materials, their d/d patterns in the yielding and necking stages are the same; welded specimens have the similar magnetic signal curves with their base metal, and the welded structure does not interfere with its distribution; different materials have their unique zero point (=0) before being fractured, which is independent of the fracture location; there is a direct relationship between the intragranular slip and the changes of magnetic signals, which indicates the uneven plastic deformation.

关键词: metal magnetic memory (MMM)     magnetic intensity (Hp)     static tension     weld    

Topology optimization and seismic collapse assessment of shape memory alloy (SMA)-braced frames: Effectiveness

Aydin HASSANZADEH; Saber MORADI

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 281-301 doi: 10.1007/s11709-022-0807-3

摘要: This paper presents a seismic topology optimization study of steel braced frames with shape memory alloy (SMA) braces. Optimal SMA-braced frames (SMA-BFs) with either Fe-based SMA or NiTi braces are determined in a performance-based seismic design context. The topology optimization is performed on 5- and 10-story SMA-BFs considering the placement, length, and cross-sectional area of SMA bracing members. Geometric, strength, and performance-based design constraints are considered in the optimization. The seismic response and collapse safety of topologically optimal SMA-BFs are assessed according to the FEMA P695 methodology. A comparative study on the optimal SMA-BFs is also presented in terms of total relative cost, collapse capacity, and peak and residual story drift. The results demonstrate that Fe-based SMA-BFs exhibit higher collapse capacity and more uniform distribution of lateral displacement over the frame height while being more cost-effective than NiTi braced frames. In addition to a lower unit price compared to NiTi, Fe-based SMAs reduce SMA material usage. In frames with Fe-based SMA braces, the SMA usage is reduced by up to 80%. The results highlight the need for using SMAs with larger recoverable strains.

关键词: topology optimization     shape memory alloy     Fe-based SMA     steel braced frames     performance-based seismic design     collapse assessment    

双向4D打印——对3D打印形状记忆材料可逆性的回顾

Amelia Yilin Lee, Jia An, Chee Kai Chua

《工程(英文)》 2017年 第3卷 第5期   页码 663-674 doi: 10.1016/J.ENG.2017.05.014

摘要:
增材制造技术的快速发展和形状记忆材料的进步推动了四维(4D)打印的发展。由于一定程度上的外部刺激,人机交互作用、传感器和电池的需求将被消除,通过使用增材制造技术,可以生产出更复杂的设备和零部件。随着目前对形状记忆机制的理解和对增材制造技术的改进设计,4D 打印的可逆性已经被证明是可行的。传统的单向4D 打印需要在编程(或定型)阶段进行人机交互,但是可逆的4D 打印或双向4D 打印将完全消除对人为干预的需求,因为编程阶段被另一种外界刺激所取代。这使得可逆4D 打印部件完全依赖外部刺激。零部件在每次回收后都可能被重复利用,甚至在某个周期中可以持续使用——这是一个具有工业运用吸引力的方面。本文综述了影响4D 打印的形状记忆材料的机制,目前在合金和聚合物上的4D 打印研究结果,以及它们各自存在的一些局限性。对形状记忆材料的可逆性和利用三维(3D)打印技术制作的可行性进行了总结和分析。在对可逆4D 打印技术相关内容的介绍中,本文也强调了3D 打印技术的方法、相关驱动的机制以及实现可逆性的策略。最后,提出了可逆4D 打印技术未来的研究方向。

关键词: 4D打印     增材制造     形状记忆材料     智能材料     形状记忆合金     形状记忆聚合物    

标题 作者 时间 类型 操作

Hyperglycemic memory in diabetic cardiomyopathy

期刊论文

Anti-hyperglycemic effect of the polysaccharide fraction isolated from mactra veneriformis

Lingchong WANG, Hao WU, Nian CHANG, Kun ZHANG

期刊论文

An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memoryeffect in shape memory alloys

S. HASHEMI,H. AHMADIAN,S. MOHAMMADI

期刊论文

Application of metal magnetic memory test in failure analysis and safety evaluation of vessels

Yiliang ZHANG, Song YANG, Xuedong XU

期刊论文

Temperature effects of shape memory alloys (SMAs) in damage control design of steel portal frames

Xiaoqun LUO, Hanbin GE, Tsutomu USAMI

期刊论文

A novel shape memory alloy actuated soft gripper imitated hand behavior

期刊论文

A fully solid-state cold thermal energy storage device for car seats using shape-memory alloys

期刊论文

Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy

Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG

期刊论文

A decomposition approach to the design of a multiferroic memory bit

Ruben ACEVEDO, Cheng-Yen LIANG, Gregory P. CARMAN, Abdon E. SEPULVEDA

期刊论文

In memory of Perry L. McCarty, seminal founder of Environmental Biotechnology

期刊论文

A mini review: Shape memory polymers for biomedical applications

Kaojin Wang, Satu Strandman, X. X. Zhu

期刊论文

Deformation analysis of shape memory polymer for morphing wing skin under airflow

Weilong YIN, Jingcang LIU, Jinsong LENG,

期刊论文

Characteristics of metal magnetic memory signals of different steels under static tension

Yiliang ZHANG, Ruibin GOU, Jimin LI, Gongtian SHEN,

期刊论文

Topology optimization and seismic collapse assessment of shape memory alloy (SMA)-braced frames: Effectiveness

Aydin HASSANZADEH; Saber MORADI

期刊论文

双向4D打印——对3D打印形状记忆材料可逆性的回顾

Amelia Yilin Lee, Jia An, Chee Kai Chua

期刊论文